The Unified Transform Method for Linear PDEs
نویسنده
چکیده
There exist certain nonlinear evolution PDEs which can be mapped to linear evolution PDEs. The prototypical such linearizable PDE is the so-called Burger's equation u t − u xx = 2uu x , (1.1) which can be written in the conservation form ∂ t u = ∂ x (u x + u 2). Employing the so-called Cole-Hopf transformation u = q x q (1.2) and using the identity ∂ t q x q = ∂ t ∂ x ln q = ∂ x ∂ t ln q = ∂ x q t q , we find, upon an x-integration, the heat equation q t − q xx = 0. Burger's equation arises in several applications involving nonlinear diffusive processes. A prototypical equation arising in several applications involving nonlin-ear dispersive processes is the celebrated Korteweg-deVries (KdV) equation u t + u x + u xxx + uu x = 0. (1.4) 1 1 INTRODUCTION 2 Is there a transformation analogous to (1.2) which maps (1.4) to the corresponding linear equation q t + q x + q xxx = 0, (1.5) called the Stokes equation? The answer to this question is negative. However, there does exist a more subtle linearization procedure, which is based on the existence of the so-called Lax pair formulation. Equations which admit such a formulation are called integrable PDEs. Such equations are rare, however many of them are physically significant (F. Calogero has presented a heuristic argument for the explanation of this fact). The simplest integrable nonlinear evolution PDE in one spatial dimension is the so-called nonlinear Schrödinger (NLS) equation iu t + u xx − 2σ|u| 2 u = 0, σ = ±1, u ∈ C.
منابع مشابه
A New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملA numerical technique for linear elliptic partial differential equations in polygonal domains
Integral representations for the solution of linear elliptic partial differential equations (PDEs) can be obtained using Green's theorem. However, these representations involve both the Dirichlet and the Neumann values on the boundary, and for a well-posed boundary-value problem (BVPs) one of these functions is unknown. A new transform method for solving BVPs for linear and integrable nonlinear...
متن کاملThe Unified Method in Polygonal Domains via the Explicit Fourier Transform of Legendre Polynomials
The recent numerical implementation by Fornberg and collaborators of the so-called unified method to linear elliptic PDEs in polygonal domains involves the computation of the finite Fourier transform of the Legendre polynomials. A variation of this approach, introduced by two of the authors, also involves the same computation. Here, instead of expressing the finite Fourier transform of the Lege...
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملOn the convergence of the homotopy analysis method to solve the system of partial differential equations
One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015